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Abstract. We discuss the shape transitions in few medium heavy-mass nuclei with emphasis on
low-temperature behaviour of the giant dipole resonance (GDR) observables. We employ a macroscopic
approach towards GDR in which the GDR observables are related to the nuclear shapes. Shape calculations
were done using the cranked Nilsson-Strutinsky method (CNSM) extended to finite temperature. Ther-
mal shape fluctuations are computed with free energies calculated employing Landau parameterization as
well as those calculated exactly (without using parameterizations) at given spin and temperature. The
results obtained are confronted with the experimental data wherever available. Our study reveals that if
the fluctuations are treated properly, then, in spite of thermal fluctuations, GDR observables could very
well reflect the shape transitions at low temperature.

PACS. 24.30.Cz Giant resonances – 21.60.-n Nuclear structure models and methods – 24.60.-k Statistical
theory and fluctuations

1 Introduction

Isovector giant dipole resonance commonly termed as
GDR is one among the fundamental modes of excitations
in nuclei caused by the photons [1]. In a microscopic pic-
ture, GDR can be understood in terms of particle-hole ex-
citations often called p-h doorway resonance [2,3]. Alter-
natively, macroscopic approaches couple the GDR to the
shape of the nuclei [4–7]. The GDR spectrum could effec-
tively reflect the structure of the nuclear state on which
GDR is built. For hot rotating nuclei, GDR serves as a
unique probe to obtain the structure information. Hence
GDR studies of nuclei as a function of both temperature
(T ) and spin (I) have been an interesting and important
area of research in nuclear-structure physics. Recent devel-
opments on the theoretical [7–9] and experimental [10–13]
fronts could shed more light in our understanding of hot
rotating nuclei. However, several key issues remain to be
understood [14]. One among them is the variation of the
GDR width (ΓGDR) as a function of T and I.

In the ground state, the GDR observables, primarily
the ΓGDR can be directly related to the equilibrium de-
formation (β). For hot and rotating nuclei the ΓGDR is
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influenced significantly by three factors viz, 1) change in
β, 2) due to thermal shape fluctuations the averaged de-
formation (β̄) may increase which leads to the increase of
ΓGDR with increasing T and 3) Coriolis splitting of GDR
components may increase ΓGDR, which happens at higher
spins. Among the above factors, the thermal fluctuations
are observed to be more dominant. Hence, as the temper-
ature increases, generally ΓGDR increases irrespective of
the trend of β (which in most of the cases would be de-
creasing). In observations at fixed T and varying I, ΓGDR

was found to follow the trend of β and β̄. In this case we
observe that the gross structure effects do survive thermal
fluctuations and changes in the equilibrium shape could be
probed by the GDR [15]. However, in any case, there is
a direct correlation between β̄ and ΓGDR and few explicit
relations are derived [9,16].

At low temperatures when fluctuations are not very
dominant, the averaged shape (β̄) could well reflect the
changes in the equilibrium shape (β). Hence, it would be
interesting to carry out investigations in such cases where
better and clear correlations between ΓGDR and β do ex-
ist. With recent experimental techniques, few low-T mea-
surements have been made [10,11] and the data could not
be explained by conventional thermal-fluctuation calcu-
lations. At low T , microscopic effects such as shell and
pairing effects could make important contributions [7,8].



200 The European Physical Journal A

Hence, care should be taken while applying the theories
which were successful in the high-T regime. One among
the major concerns in this regard is the applicability of
free-energy parameterizations such as Landau theory [5,
17] which were employed to do time-saving calculations.
In a previous work [7], some of us have presented a sim-
ple theoretical framework for calculating GDR observables
without employing the free-energy parameterizations. In
ref. [18] few discrepancies in applying the free-energy pa-
rameterizations at low T and high spins were pointed out
and they were ascribed to spin-dependent shell corrections
which the existing parameterizations do not account for.
In the present work, we study in detail the shape transi-
tions in few selected medium heavy-mass nuclei with an
emphasis on the low-T behaviour of these nuclei and its
consequences on GDR observables.

In the next section, we present our theoretical frame-
work in an illustrative way comprising the details about
temperature dependence of shell corrections. In sect. 3, we
discuss our results for few selected medium heavy-mass
nuclei along with the experimental data wherever avail-
able. The conclusions are drawn in sect. 4.

2 The formalism

Some details of our theoretical formalism for studying gi-
ant dipole resonance can be found in refs. [7,18]. Here we
present the cranked Nilsson-Strutinsky method (CNSM)
in an illustrative way and outline the other parts. The
formalism can be explained in three folds with models for
1) shape calculations, 2) relating the shapes to GDR ob-
servables and 3) considering the shape fluctuations due to
thermal effects. The important details of these three parts
are presented in the following subsections.

2.1 Cranked Nilsson-Strutinsky method at finite
temperature

In this approach [7,18], the total free energy (FTOT) at
fixed deformation is calculated using the expression

FTOT = ERLDM +
∑

p,n

δF . (1)

Expanding the rotating liquid-drop model (LDM) en-
ergy ERLDM and writing shell corrections in the rotating
frame [19] leads to

FTOT = ELDM +
∑

p,n

δFω +
1

2
ω(ITOT +

∑

p,n

δI) . (2)

The angular velocity ω is tuned to obtain the desired spin
given by

ITOT = =rigω + δI . (3)

The liquid-drop energy (ELDM) is calculated by summing
up the Coulomb and surface energies corresponding to a
triaxially deformed shape defined by the deformation pa-
rameters β and γ. The rigid-body moment of inertia (=rig)

is calculated with surface diffuseness correction [7]. δF and
δI are the shell corrections corresponding to free energy
and spin, respectively. To calculate the shell corrections,
we use the triaxially deformed Nilsson model together with
Strutinsky’s prescription. The single-particle energies (eωi )
and spin projections (mi) are obtained by diagonalizing
the triaxial Nilsson Hamiltonian in a cylindrical represen-
tation up to the first twelve major shells. At finite tem-
peratures the free energy in the rotating frame is given by

Fω =
∞∑

i=1

eωi ni − T
∞∑

i=1

si , (4)

where si are the single-particle entropies and ni are
the occupation numbers which follow the Fermi-Dirac
distribution given by

ni =
1

1 + exp
(
eω

i
−λ

T

) . (5)

The chemical potential λ is obtained using the constraint∑∞

i=1 ni = N , where N is the total number of particles.
The total entropy S =

∑∞

i=1 si can be represented in
terms of occupation numbers as

S = −
∞∑

i=1

[ni lnni − (1− ni) ln(1− ni)] . (6)

The details of the shell correction method at finite T
can be found in refs. [7,20]. Here we outline the method il-
lustratively and discuss the estimation of the critical tem-
perature at which shell corrections vanish. The shell cor-
rection is given in terms of the single-particle level density
as [7,21]

δFω = Fω − F̃ω =

∫ λ

−∞

e g(e) de−
∫ λ̃

−∞

e g̃(e) de , (7)

where g(e) = dN (e)
de is the single-particle level density and

N (e) is the total number of particles that can be accom-
modated by the energy levels with their energy ≤ e. λ and

λ̃ are the chemical potentials corresponding to the discrete
and smooth single-particle distributions, respectively. λ

and λ̃ can be calculated using the constrains N (λ) = N

and Ñ (λ̃) = N , respectively. We can also write

g(e) =
dN (λ)

dλ

∣∣∣∣
λ=e

=

∞∑

i=1

dni(e
ω
i , λ)

dλ

∣∣∣∣
λ=e

. (8)

From eqs. (5) and (8), we can write the temperature-
dependent single-particle level density as

g(e) =

∞∑

i=1

1

4T cosh2[(eω − ei)/2T ]
. (9)

From the above relation, it is clear that with the inclusion
of temperature the effective energy spectrum is no longer
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(a) (b) (c) 

Fig. 1. (a) A typical single-particle energy spectrum. (b) Sim-
ulation of the thermal effect on the smoothing of the
single-particle spectrum (a) at a temperature of 0.5 MeV.
(c) Simulation of Strutinsky smoothing of the single-particle
spectrum (a). Now the shell correction comes from the differ-
ence between (b) and (c) which will always be less than that
between (a) and (c). At higher temperatures, (b) and (c) will
be similar leading to the disappearance of shell correction. (In
cases (b) and (c) the level densities (9) and (12) are plotted
with white representing zero and full black representing values
≥ 1 MeV−1. 254 shades of grey are used to represent interme-
diate values.)

discrete as we allow the level density to vary smoothly with
its peaks at discrete levels corresponding to zero temper-
ature. Hence, for hot nuclei the effective single-particle
spectrum can be thought as a quasi-continuum whose
smoothness increases with temperature. This smoothing
of energy levels due to temperature is illustrated in fig. 1b.
It has to be noted that the direct effect of temperature in
nuclei is the modification of occupation numbers of levels
which are still discrete. This, in turn, alters the free energy
(4). The alternate view-point of considering the smearing
of levels, is useful to understand the role of temperature
on shell corrections as explained below.

The natural way of applying Strutinsky averaging to
the level density is to convolute g(e) with the averaging
function

g̃(e) =
1

γ s

∫ ∞

−∞

f̃

(
e− e′
γs

)
g(e′) de′ . (10)

We use the averaging function

f̃(x) =
1√
π
exp(−x2)

p∑

m=0

CmHm(x) , (11)

where Cm = (−1)m/2/(2m(m/2)!) ifm is even and Cm = 0
if m is odd; x = (e− eωi )/γs, γs is the smearing parameter

satisfying the plateau condition dF̃ /dγs = 0; p is the or-
der of smearing and Hm(x) are the Hermite polynomials.
When T = 0, g(e′) is a delta function and we get

g̃(e) =
∞∑

i=1

f̃(x) . (12)

The above relation can be treated as a representative of
a Strutinsky smoothed spectrum as illustrated in fig. 1c.

Fig. 2. Temperature-dependent single-particle level densities
at different temperatures. The curves in the insets are the first
component of g(e) (9). It is evident that the rise in temperature
leads to an increase in the width of the components and hence
leads to a smooth energy spectrum.

At T = 0, we can consider the shell correction energy
(7) to be the difference between the energies calculated
using, the discrete spectrum (fig. 1a) and the Strutinsky
smoothed spectrum (fig. 1c). At finite temperature one
has to consider the difference between the temperature
smoothed spectrum (fig. 1b) instead of the discrete spec-
trum (fig. 1a).

Increasing temperature will result in the increase of
the width of the function (9) and subsequently will
make the level density vary smoothly with respect to the
single-particle energy. This situation is well explained by
fig. 2, in which the temperature-dependent single-particle
level density (9) is plotted as a function of single-particle
energy. It is clearly seen in the figure that around
T = 3 MeV the level density ceases to fluctuate. This form
of g(e) at high temperature is very similar to the Strutin-

sky smoothing function f̃(x). In this case, the Strutinsky
smoothed spectrum and the effective single-particle spec-
trum are much similar and hence there is no difference
between the two terms in eq. (7). This illustrates the van-
ishing of the shell correction at high temperatures.

Function (9) is very similar to a Gaussian and we have
our Strutinsky smeared single-particle level density as a
Gaussian with curvature correction. The relation between
the two smoothing quantities could be derived as [22]

T ≈ 0.472 γs . (13)

If we have γs in the order of the inter-shell spacing (~ω),
the above relation suggests that temperatures above half
of the inter-shell spacing will wash out shell corrections.
The critical temperatures obtained using expression (13)
are given in fig. 3. It is evident from the figure that the crit-
ical temperature is high for lower-mass nuclei and strongly
depend on the smearing parameter γs.
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Fig. 3. Upper limits for critical temperatures (in MeV) as
a function of mass number and smearing width (in units of
oscillator frequency ~ω0).

Substituting eq. (10) in the expression for F̃ in eq. (7),
and using eq. (4), we have [20,21]

F̃ω =
∑

i

eωi ñi − T
∑

i

s̃i + γs

∫ ∞

−∞

f̃(x)x
∑

i

ni(x)dx ,

(14)
where

ñi =

∫ ∞

−∞

f̃(x) ni(x) dx , (15)

s̃i =

∫ ∞

−∞

f̃(x) si(x) dx . (16)

The integrals appearing in eq. (14) are evaluated numer-
ically using the Hermite-Gauss quadrature. The plateau
conditions are observed to be well satisfied with the third
term on the right-hand side of eq. (14). The plateaus ob-
tained for the proton shells in 208Pb at different temper-
atures are shown in fig. 4. We observe that the plateau is
clearer for the values of γs = 1.6 and p = 6 and we found
this to be similar also for neutron shells.

For the spin distribution, the Strutinsky smoothed spin
can be derived in a similar way leading to the expression

Ĩ =
∑∞

i=1miñi and hence the shell correction for spin is

δI =

∞∑

i=1

mini −
∞∑

i=1

miñi . (17)

2.2 Macroscopic method for GDR

The nuclear shapes are related to the GDR observ-
ables using a model [7,23] comprising an anisotropic
harmonic-oscillator potential with separable dipole-dipole
interaction. In this formalism the GDR frequencies in the
laboratory frame are obtained as

ω̃z = (1 + η)1/2ωz , (18)

Fig. 4. Shell correction energy as a function of the smear-
ing parameter in the case on 208Pb proton shells at different
temperatures. The smearing parameter γs is given in units of
oscillator level spacing ~ω0.

ω̃2 ∓Ω =

{
(1 + η)

ω2
y + ω2

x

2
+Ω2

+
1

2

[
(1 + η)2(ω2

y − ω2
x)

2

+8Ω2(1 + η)(ω2
y + ω2

x)

] 1

2
} 1

2

∓Ω , (19)

ω̃3 ∓Ω =

{
(1 + η)

ω2
y + ω2

x

2
+Ω2

−1

2

[
(1 + η)2(ω2

y − ω2
x)

2

+8Ω2(1 + η)(ω2
y + ω2

x)

] 1

2
} 1

2

∓Ω , (20)

where Ω is the cranking frequency, ωx, ωy, ωz are the
oscillator frequencies derived from the deformation of the
nucleus and η is a parameter that characterizes the isovec-
tor component of the neutron and proton average field.
The GDR cross-sections are constructed as a sum of
Lorentzians given by

σ(Eγ) =
∑

i

σmi

1 +
(
E2
γ − E2

mi

)2
/E2

γΓ
2
i

, (21)
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where the Lorentz parameters Em, σm and Γ are the res-
onance energy, peak cross-section and full width at half
maximum, respectively. Here i represents the number of
components of the GDR and is determined from the shape
of the nucleus [23,24]. Γi is assumed to depend on the cen-
troid energy through the relation [25]

Γi ≈ 0.026E1.9
i . (22)

The peak cross-section σm is given by

σm = 60
2

π

NZ

A

1

Γ
0.86(1 + α) . (23)

The parameter α which takes care of the sum rule is fixed
at 0.3 for all the nuclei. In most of the cases we normalize
the peak with the experimental data and hence the choice
of α has less effect on the results. The other parameter η
varies with the nucleus so that the ground-state GDR cen-
troid energy is reproduced. The choice for 147Eu is η = 2.8,
for Er isotopes is η = 3.0 and for 179Au it is η = 3.4.

2.3 Shape fluctuations

The relation between nuclear shape and GDR cross-
section is not straightforward especially in hot nuclei
where large-amplitude thermal fluctuations of the nuclear
shape play an important role [26]. Hence, for a meaning-
ful comparison of experimental and theoretical values, the
thermal shape fluctuations should be taken care of prop-
erly. For hot and rotating nuclei there can be fluctuations
in the orientation of the nuclear symmetry axis with re-
spect to the rotation axis. The general expression for the
expectation value of an observable O incorporating both
thermal and orientation fluctuations is given by [5,27]

Ō = 〈O〉β,γ,Ω =

∫
D[α]e−F (T,I;β,γ,Ω)/T (ω̂ · I · ω̂)−3/2O∫
D[α]e−F (T,I;β,γ,Ω)/T (ω̂ · I · ω̂)−3/2

,

(24)
where Ω = (φ, θ, ψ) are the Euler angles specifying
the intrinsic orientation of the system, ω̂ · I · ω̂ =
Ix′x′ cos2 φ sin2 θ + Iy′y′ sin

2 φ sin2 θ + Iz′z′ cos
2 θ is the

moment of inertia about the rotation axis ω̂ given in terms
of the principal moments of inertia Ix′x′ , Iy′y′ , Iz′z′ , and
the volume element D[α] = β4| sin 3γ|dβ dγ sin θ dθ dφ.

In a parametrization based on the Landau theory of
phase transitions, developed by Alhassid et al. [17,26],
the free energy is expanded in terms of certain
temperature-dependent constants which are to be ex-
tracted by fitting with the free-energy calculations at fixed
temperatures from the NS method. Moreover, once the fits
involving free energy and moment of inertia are made for
the non-rotating case, the calculations can be extended to
higher spins using the relation [5]

F (T, I;β, γ,Ω) = F (T, ω = 0;β, γ) +
(I + 1/2)2

2 ω̂ · I · ω̂ . (25)

Hence this theory offers an economic parameterization to
study the hot rotating nuclei. While performing high-spin

calculations using the above relation, the shell corrections
evaluated only at ω = 0 have to be used for all spins. This
is not desirable as the single-particle levels swiftly change
positions with increasing spin, resulting in a totally differ-
ent shell structure. We have employed Landau theory in
its extended form as given in refs. [7,17] and for the fitting
of Landau constants we use the least-squares method.

Thermal shape fluctuation calculations without
free-energy parameterizations and consequent fitting are
also feasible [7,18,28] by computing the free energies and
the observables “exactly” at the integration (mesh) points
during numerical integration. In this work we have per-
formed such calculations, however, neglecting the orien-
tation fluctuations. The role of orientation fluctuations is
negligible while calculating the scalar observables [7,28,
29] such as the GDR cross-section and width. The GDR
observables and free energy are given by the cranking
model at a fixed angular frequency (ω). The calculations at
fixed spin are performed by adjusting ω to give the desired
spin. If this is done independently for each quadrupole de-
formation, one is led to use an effective volume element in
eq. (24) as shown in ref. [29]. This derivation, starting from
the partition function at fixed ω, assumes the free energy
to have quadratic dependence on ω. In Landau theory the
high-spin calculations are done using eq. (25) which sat-
isfies the exact quadratic dependence of free energy on ω.
Here we discuss the consequences as the free energy now
takes the form of eq. (1). The partition function at fixed
angular momentum I is obtained as [29]

ZI(T ) =
2I + 1

2πiT 2

∫
D[α]

[∫ i∞

−i∞

dω ω e−[ω(I+1/2)+Fω]/T

]
.

(26)
The exponent in the above integral can be taken as
−FTOT/T in our case. Letting ω̂ · I · ω̂ = =z′z′ = =TOT =
=rig + δ= and following the definitions given in ref. [19],
we have

d
[
e−FTOT/T

]
= =TOT ω e−FTOT/T dω .

In the limit d=TOT/dω → 0, the integration over ω in
eq. (26) is analytically solvable leading to an expression
having exactly the same form as eq. (24) with ω̂ · I · ω̂
replaced by =TOT. The shell corrections to moment of
inertia are significant for spherical shapes which are how-
ever suppressed by the term β4 in D[α] and for β ≥ 0.1
we have =TOT ≈ =rig. At high spins also the limiting con-
dition is very much valid as the well-deformed shapes are
more favoured. Moreover, the factor arising due to the ef-

fective volume element (=−3/2
TOT ) has not much role to play

in the practical calculations as shown in ref. [18]. Hence
the inclusion of this factor while projecting the fixed angu-
lar momentum is not mandatory and has been neglected
in some similar calculations [28].

3 Results and discussions

In the present work we have studied few selected nuclei in
the mass 140 < A < 180 region. First we investigate nuclei
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Fig. 5. GDR cross-sections for the nuclei 160Er and 166Er in
comparison with experimental data [30] (solid circles). The re-
sults from CNSM, Landau, and LDM methods are represented
by solid, dashed and dotted curves, respectively.

with strong deformation in the ground state as we could
see the effect of shape transitions as a function of spin and
temperature. The calculations are performed with 1) the
liquid-drop model (LDM) free energies and Landau the-
ory, 2) NS free energies and Landau theory and 3) cranked
NS (CNSM) free energies with the exact treatment of fluc-
tuations.

As representative cases, we study 160,166Er for which
experimental data are available. The calculated GDR
cross-sections for 160,166Er along with the experimentally
observed cross-sections are presented in fig. 5. Calculated
results are those obtained using the exact method as well
as the Landau theory. From this figure, it is clear that
there is no significant difference between the results of ex-
act and Landau calculations. This is because of the weak
nature of shell effects in 160,166Er at the measured temper-
atures. A detailed discussion on the interpretation of this
data as well as more general discussions on shape transi-
tion in these nuclei can be found in ref. [26]. However, all
those arguments are based on calculations at fixed rota-
tional frequency. Here, following a concise interpretation
of results, we discuss the shape transitions at low T .

Both the nuclei have a well-deformed prolate shape
β = 0.37; γ = −120◦ for 160Er and β = 0.41; γ = −120◦
for 166Er at the ground state. At T = 1.2 MeV and
I = 12~, the most probable shape is primarily influenced
by the temperature as a consequence of the weakening
of shell effects. This situation is illustrated in fig. 6. Due
to increase of temperature, the single-particle levels start
diffusing, leading to a continuum in which the nucleus be-

Fig. 6. Simulation of the effect of temperature on the single-
particle energy spectrum. The shading in the right panel is
done in a similar way as in fig. 1b. As the temperature in-
creases, the discrete single-particle spectrum starts diffusing
to a continuum and hence leading to a classical description fi-
nally resulting in a spherical shape. This inference could not
be obtained at the first sight of the left panel.

Fig. 7. (Colour online) Hodographs depicting shape transi-
tions in 166Er as a function of spin and temperature. The ar-
rows represent increasing spin which varies from 0~ to 60~ in
units of 10~.

haves classically. On the other hand, the spin induces a
shape transition towards a non-collective oblate shape via
the spherical shape, even in a rotating liquid drop. Hence,
both the temperature and spin drive these nuclei towards
a spherical shape. However, the experimental data is well
explained by a two-Lorentzian fit showing a finite defor-
mation. This splitting (or broadening) of the GDR line
shape could be understood to be due to thermal fluctu-
ations, which allows the non-equilibrium shapes to con-
tribute. In our calculations we find that the averaged de-
formation parameters are β = 0.33, γ = −144.95 for 160Er
and β = 0.34, γ = −144.60 for 166Er.

Even though the experimental data is well understood
in terms of shape fluctuations, the data could not directly
represent the shape transitions happening in these nuclei.
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Fig. 8. (Colour online) Potential energy surfaces of the nucleus 166Er at different spins and temperatures. The contour line
spacing is 1 MeV. The equilibrium shape is represented by a filled circle and the first two minima are shaded.

The GDR cross-sections could not be easily related to the
equilibrium shapes [26] as was done in the ground states.
The correlations between the shape and GDR observables
are well established [15] to be prominent in spite of the
thermal fluctuations. For example, a comparison between
the behaviour of ΓGDR with spin in the nuclei 106,110Sn
and 176W clearly suggests that the shape transitions are
well represented by the ΓGDR [15]. A very direct relation
between the averaged shapes and ΓGDR has been recently
derived [9]. However, it has to be noted that the GDR
could probe shape transitions only if the change in β̄ is
noticeable or rather swift. This swift change in β̄ in many
cases is well suppressed by the fluctuations. Here we show
that the use of free-energy parametrizations as well could
suppress the sharp changes in β̄. In fig. 7 we have de-
picted in hodographs the variation of the averaged shape
obtained from the CNSM and Landau calculations. At
T = 0.5 MeV, I = 0~, the exact calculations suggest that
the β̄ is close to its ground-state value. At I = 10~, due to
the centrifugal effects there is a quenching in the prolate
deformation. At higher spins, contributions from high de-
formations lead to the increase in β̄. These sharp changes
in the averaged shapes are totally missing in the Landau
results. Moreover, the trajectory of (β̄, γ̄) as a function of
spin is very different from the exact calculations. As sug-
gested in our previous work [18], this discrepancy at low
temperature is inherent in the Landau prametrization. At
higher temperatures we see that the Landau calculations

Fig. 9. (Colour online) GDR cross-sections for the nucleus
166Er at different spins and temperatures. The solid, dashed
and dotted lines represent results of CNSM, Landau and LDM
calculations, respectively. The numbers given to the right of the
GDR curves are the corresponding temperatures given in MeV.

do well on a par with exact calculations. Also we see that
due to strong fluctuations at higher T , the variation in (β̄,
γ̄) is much less.

In fig. 8 we present the potential energy surfaces (PES)
of 166Er at different T and I. At T = 0.5 MeV we see
that the shell effects are stronger keeping intact the well-
deformed prolate shape. At T = 1.0 MeV, we observe
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Fig. 10. GDR width for the nucleus 166Er as a function of
spin at different temperatures. The numbers near the curves
are the corresponding temperatures given in MeV.

a spread in the minimum due to the weakening of shell
effects and at T = 1.5 MeV the shell effects almost lose
their sting as we see a PES resembling a LDM picture.
It is instructive to see how well these shape effects are
reflected in GDR cross-sections. The results of our GDR
cross-section calculations are shown in fig. 9. The shape
transitions at T = 0.5 MeV are well reflected in the GDR
curves. At T = 0.5 MeV, I = 0~, the GDR curve is well
split. As previously discussed, this splitting can arise from
two cases viz, a) the well-deformed equilibrium shape, b)
the dominance of thermal fluctuations. A comparison of
the CNSM results with Landau and LDM ones suggests
the ruling out of the latter case. If it is due to fluctuations
alone, then the Landau and LDM results also should have
shown the broadening. At T = 0.5 MeV, I = 60~, the
Landau results suggest a broader curve. This also could
be understood due to the difference in the β̄ values (see
fig. 7). At T = 1.0 MeV the discrepancy between different
methods is marginal which is washed out at T = 1.5 MeV.

The calculated ΓGDR at different T are presented in
fig. 10 as a function of spin. At T = 0.5 MeV, the difference
in ΓGDR values obtained from Landau and CNSM calcula-
tions are of the order up to 2 MeV in few cases. The spin-
dependence at low T could not be reproduced even quali-
tatively by the Landau calculations. At T = 1.0 MeV, the
difference goes up to ∼ 0.6 MeV along with the discrep-
ancy in spin-dependence. At T = 2.0 MeV, the Landau re-
sults go well with exact calculations and at T = 2.5 MeV
all the results reach the LDM values. Hence, there are in-
teresting shape transitions as a function of spin in 166Er
at T = 0.5 MeV, which are well reflected in GDR observ-
ables. Employing free-energy parameterizations for these
cases predicts no significant change in the GDR observ-
ables.

Recently the GDR cross-sections of 164Er were mea-
sured within a sharp angular-momentum window [31]. The
GDR line shapes were reported at spins I ∼ 26~ and
I ∼ 54~. However, the corresponding temperatures were
not reported. We have calculated the GDR cross-sections

Fig. 11. Temperature dependence of GDR cross-sections for
the nucleus 164Er at I = 26~ and I = 54~.

Fig. 12. GDR cross-sections for the nucleus 147Eu in com-
parison with experimental data [32]. The results from CNSM,
Landau, and LDM methods are represented by solid, dashed
and dotted curves, respectively.

of 164Er at different temperatures with the spins fixed at
26~ and 54~. The results of our calculations are shown in
fig. 11. As expected, the results are much similar to those
of 166Er. Deviations in Landau results from CNSM ones
are noticeable only at T = 0.5 MeV and at T = 1.0 MeV
with the order of difference in ΓGDR being 1 MeV and
0.5 MeV, respectively. In both cases the ΓGDR by Landau



P. Arumugam et al.: Giant dipole resonance and shape transitions in warm and rapidly rotating nuclei 207

calculations are lower at I = 26~ and are higher at
I = 54~. Hence, the trend in spin-dependence of ΓGDR

could not be reproduced by the Landau calculations. This
is due to the fact that the spin-dependence of the shell
correction energy is not taken care of by the Landau
parametrization. Our study suggests that for an accurate
description of the GDR observables at T ≤ 1 MeV in 166Er
we should employ an exact calculation of the fluctuations.

The spin-dependence of GDR observables is measured
recently in the case of 147Eu [32]. Observations were done
in the spin range 37~–50~ within a narrow temperature
range around T ∼ 1.3 MeV. The measured cross-sections
at different T and I are presented in fig. 12 along with
our theoretical results. The agreement between theory and
experiment turns out to be good, as seen in the figure.
Our results are much closer to the theoretical values (not
shown here) reported in [32]. Also we see that spin-driven
shell effects have no role to play as the CNSM and Landau
results are almost the same in these temperatures. In fact
the proton and neutron shell corrections are weak and they
act against each other. The averaged shapes felt by 147Eu
at T = 1.3 MeV are plotted in fig. 13a as a function of spin.
A gradual increase in the β̄ could be seen and this leads to
the broadening of GDR curves as the spin increases. This
feature is well depicted by the GDR curves in fig. 12. In
fig. 13b, we present the ΓGDR also along with the β̄. Both
the experimental and theoretical values are shown in this
figure. Good conformity between these values could be
seen in the figure. In the same figure we have included our
results calculated also at T = 0.5 MeV. In fig. 14, the po-
tential energy surfaces calculated by CNSM are depicted.
At ω = 0, the shell corrections are strong (∼ 2 MeV for the
equilibrium shape which is spherical) resulting in a crisp
minimum around the spherical shape. Hence, the ΓGDR at
ω = 0 is expected to be lower than the LDM predictions
similar to the case of 208Pb [7]. As the spin increases, the
minimum shifts towards the oblate shape with β ∼ 0.1 up
to 30~. At 40~ one can see from fig. 14 a jump in the min-
imum towards β ∼ 0.3. We see in fig. 13a that the change
in β is carried over to β̄ in the CNSM results. The varia-
tion in β̄ is well reflected also in ΓGDR. Hence these shape
transitions do survive thermal fluctuations and could be
reflected in GDR observables. However, this is the case
with CNSM calculations only. The shape transitions are
totally washed out in the Landau calculations. The Lan-
dau results are closer to LDM results and hence could not
account properly for the shell effects. At low temperatures
of the order of 0.5 MeV, we could have better direct corre-
lations between the shapes and the GDR observables only
if we adopt CNSM calculations. Recent low-temperature
measurements are discussed below.

The low-temperature GDR measurements have been
reported for the nuclei 120Sn [10] and 179Au [11]. The GDR
width of 120Sn was measured [10] at T = 1.0 MeV to be
4± 1 MeV. This width was found to be much lower than
the predictions of thermal-fluctuation models (∼ 7 MeV).
In our earlier calculations [7] we found that the shell cor-
rections do not have any role to play in the case of 120Sn.
This rules out the proper treatment of shell effects to inter-

Fig. 13. GDR width and the averaged deformations for the
nucleus 147Eu as a function of spin (I~) The solid circle, solid
square and solid triangle correspond to experimental data [32]
at beam energies 170, 165 and 160 MeV, respectively. These
energies correspond to temperatures from 1.2 to 1.4 MeV [32].
The results from CNSM, Landau, and LDM methods are rep-
resented by solid, dashed and dotted curves, respectively.

pret the low-T data. Very recently, this anomaly could be
understood as a consequence of fluctuations in the pairing
field [8]. Hence, the low-temperature GDR measurements
have proved that the pairing plays a vital role. In the
present work, we have not considered the pairing correla-
tions. However, we discuss problems apart from this, i.e.,
the discrepancy in free-energy parametrizations and the
direct correlations between shape transitions and GDR
observables. As another supportive case, we discuss here
the low-T observations in 179Au [11]. Also in this nucleus,
at T = 0.7 MeV, the ΓGDR was observed to be much less
than the thermal-fluctuation model predictions. The ob-
served width is 5.0 ± 0.35 MeV, whereas the LDM with
thermal fluctuation predicts ∼ 7 MeV. Initially shell ef-
fects were attributed for the lowering of ΓGDR [11], which
we have ruled out in our previous work [18]. Only pairing
fluctuations are expected to explain this lowering of ΓGDR.
In fig. 15, we show the calculated GDR cross-sections for
179Au at different temperatures and spin. The overall ob-
servations are very much similar to the case of 164,166Er
except that this nucleus undergoes a shape transition to a
strongly deformed shape around 60~. All the three meth-
ods predict almost the same cross-section at this point,
too. At T = 0.7 MeV, the difference between ΓGDR by
exact and other methods comes out to be ∼ 0.3 MeV.
The reason for this discrepancy is the shell effects, which
leads to shape coexistence. In fig. 16, we have plotted
the potential energy curves as a function of T . Coexisting
oblate and prolate shapes which have much lower energy
than the spherical state could be seen at low T . Around
T ∼ 1.0 MeV the nucleus attains a spherical shape. In
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Fig. 14. (Colour online) Potential energy surfaces of the nucleus 147Eu at different spins and at T = 0.5 MeV. The contour
line spacing is 1 MeV. The equilibrium shape is represented by a filled circle and the first two minima are shaded.

Fig. 15. (Colour online) GDR cross-sections for the nucleus
179Au at different spins and temperatures. The solid, dashed
and dotted lines represent results of CNSM, Landau and LDM
calculations, respectively. The numbers given to the right of the
GDR curves are the corresponding temperatures given in MeV.

fig. 17, we depicted the spin-dependence of ΓGDR of 179Au
at T = 0.7 MeV. The exact calculations suggest weak spin-
dependence and the trend of the curves by exact and other
calculations are significantly different.

4 Conclusions

We have presented our macroscopic approach towards
GDR with the details concerning the shell correction pro-
cedure at high spin and temperature. Thermal shape fluc-
tuations are treated with and without free-energy pa-
rameterization. Shape transitions at low temperature in
160,164,166Er are discussed along with their effects in GDR
observables. Our low-T calculations predict that the dis-

Fig. 16. Potential (free) energy curves for different shapes for
the nucleus 179Au as a function of T . At low temperatures,
shape coexistence can be seen and at T ∼ 1.0 MeV the nucleus
attains a spherical shape.

crepancies in using free-energy parameterizations could al-
ter the GDR width up to 2 MeV in certain cases. Recently,
observed GDR cross-sections and widths of 147Eu at dif-
ferent temperature and spin could be well understood by
our calculations. We have shown that if the fluctuations
are treated properly, then, in spite of thermal fluctuations,
GDR observables could very well reflect the shape transi-
tions at low temperature. Calculations using free-energy
parameterizations predict that these transitions could not
effect significant changes in GDR observables due to ther-
mal fluctuations. Our calculations rule out the possibil-
ity that at low T , within a thermal-fluctuation model,
a proper treatment of shell corrections could explain the
quenching in the GDR width. Any complete description of
nuclei at low T should comprise pairing correlations. Work
is in progress to incorporate them in our framework. Be-
sides neglecting the role of pairing correlations, our low-T
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Fig. 17. GDR width for the nucleus 179Au as a function of
T . The results from CNSM, Landau, and LDM methods are
represented by solid, dashed and dotted curves, respectively.

calculations clearly and quantitatively bring out the dis-
crepancies in using free-energy parametrizations and sug-
gest that in spite of thermal fluctuations, GDR could ef-
fectively probe the sharp transitions which were predicted
to be washed out when free-energy parametrizations are
employed.
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